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The toolbox for computational protein crystallography is

full of easy-to-use applications for the routine solution and

refinement of periodic diffraction data sets and protein

structures. There is a gap in the available software when it

comes to aperiodic crystallographic data. Current protein

crystallography software cannot handle modulated data, and

small-molecule software for aperiodic crystallography cannot

work with protein structures. To adapt software for modulated

protein data requires training data to test and debug the

changed software. Thus, a comprehensive training data set

consisting of atomic positions with associated modulation

functions and the modulated structure factors packaged as

both a three-dimensional supercell and as a modulated

structure in (3+1)D superspace has been created. The

(3+1)D data were imported into Jana2006; this is the first

time that this has been performed for protein data.
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1. Introduction

During the course of data collection, a crystal may produce

an unexpected aperiodic diffraction pattern. Currently, when

these cases occur the first response is to remove the crystal and

to mount another one because there is no software to handle

these data. Although the spots may be well defined, they

cannot be indexed with standard software, or perhaps only a

fraction of them can be indexed. There can be many reasons

for this: for example, modulations of position or occupancy,

quasicrystals etc. Of interest here is the case of a protein

crystal with a positional modulation in one direction.

The diffraction pattern of a modulated crystal has a unique

signature consisting of main reflections flanked by one or

more satellites (Fig. 1). When most protein crystallographers

try to process these data, the main reflections will be indexed

and predicted but the satellite reflections will be problematic.

They may or may not be indexed as a supercell. If the

modulation is incommensurate they will not be handled

properly at all because they will not have an integral rela-

tionship to the main unit cell. Satellite reflections of significant

intensity from protein crystals may not be observed if only

low-resolution data are collected. If they are not indexed by

standard periodic software they might also be ignored/

unobserved by the crystallographer, especially if the

crystallographer did not watch the images as they were inte-

grated. In this case, only the main reflections are indexed,

integrated and used to determine the basic unit cell and three-

dimensional space group. Using only the main reflections

corresponds to averaging the unit-cell contents over all unit

cells; thus, the result is called an ‘average structure’. This
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determined average structure will have good electron density

and structure refinement in the regions where the modulation

is negligible and poor or absent electron density in the highly

modulated regions/domains of the protein structure. The

refined B values in these well ordered and modulated areas

will be correspondingly low and high, respectively. Since the

intensities and spacing of the satellite reflections are not used,

structural information about the modulated domains is lost

and these components cannot be solved.

Satellites can be successfully indexed using q vectors. One

software package that can process incommensurate protein

diffraction data is EVAL15 (Porta et al., 2011; Schreurs et al.,

2010). If the q vector is a rational number, such as 1/7, the

modulation is commensurate with the main structure (Fig. 2).

Irrational q vectors, such as 1/7.314 . . . , indicate an incom-

mensurate modulation. One or more q vectors may be

required depending on the number of directions the satellites

have relative to the mains. Modulations with one direction

require only a single q vector. The satellites are indexed along

the q vector moving out from the main. The q vector can lie

along a primary axis (e.g. along a�2 in Fig. 1) or it can be

arbitrarily oriented in the crystal. Each q vector requires an

additional index in the reflection table. For example, in the

case of one q vector all reflections will have four indexes.

This type of indexing is known as (3+n)D indexing, where

n is the number of q vectors in the data set [Fig. 1 shows a

(3+1)D indexing]. The presence of satellite reflections indi-

cates that there is a disruption in the short-range order of the

crystal along the direction(s) of the q vector(s) and that this

disruption has ordered structure rather than random unre-

lated positions (Fig. 2). Commensurate structures have a

modulation that occurs in an integral number of unit cells

(Fig. 2b), whereas incommensurate structures do not (Fig. 2c).

Modulated protein crystals can be grown naturally (e.g.

fibrous proteins and large protein complexes), can occur

owing to the physical stress associated with cryocooling (e.g.

proteins with large solvent contents) or can be purposefully

induced in order to determine time-resolved structures of

biological intermediates (the profilin–actin case; see Lovelace

et al., 2008).

There are three ways to handle the diffraction pattern of a

modulated structure. The first way is to ignore the satellite

reflections and use only the main reflections to solve the

average structure. The second way is to drop the distinction

between main and satellite reflections and to use all reflections

equivalently for indexing with a supercell. Modulated struc-

tures can be approximated with conversion from q-vector

indexing to supercell indexing (Wagner & Schönleber, 2009).

The third way invokes superspace, uses all reflections and

retains the distinction between main and satellite reflections.

An excellent review article on the application of superspace

to aperiodic crystals has been published (van Smaalen, 2005).

This method allows the most accurate refinement of incom-

mensurately modulated structures, but has not been used in

protein crystallography. It uses the main reflections to deter-

mine the reciprocal unit cell, uses a q vector to describe the

modulation direction and spacing, and employs superspace

groups and modulation functions in the refinement of the

crystal structure. Modulated structures can be more accurately

solved and refined by making use of superspace. The computer

simulation described here employs the supercell method to

create the modulated structure and then converts the supercell

into superspace. The (3+1)D diffraction and structural data

were imported into Jana2006. The data generated by this

simulation will be used to test future versions of software for

the full refinement with stereochemical restraints of incom-

mensurately modulated protein structures in (3+1)D super-

space.
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Figure 1
Introduction to (3+1)D modulated diffraction. The main reflections are
shown as large hatched circles; the vectors a�1 and a�2 define the main (or
basic) unit cell as derived from the positions of the main reflections. The
satellite reflections are shown as gray circles. In this example, the q vector
is along a�2. How the fourth index, m, for the second-order satellites is
assigned is shown.

Figure 2
Three types of crystals. (a) Periodic with identical unit cells. (b)
Commensurately modulated with a modulation wave that repeats exactly
in seven unit cells. Here, the global modulation function is an oscillating
rotation about a vertical axis. In this type of modulation the satellite
reflections would have an integral relationship with the mains and could
be assigned three-dimensional indices (h, k, l) in register with the main
reflections. (c) Incommensurately modulated crystal, where the modula-
tion wave does not repeat in phase with the unit cells and (3+1)D indices
(h, k, l, m) are required.



1.1. Supercell and superstructure

Diffraction from a commensurately modulated crystal can

usually be described using a supercell. Here, there is no

distinction between main and satellite reflections and all

reflections are used equivalently for indexing. There can be

close spacing between the reflections and, depending on the

choice of supercell, many unobserved reflections. Protein

crystallographers have employed this method by solving

commensurately modulated structures with very large unit

cells and many molecules in the asymmetric unit, and some-

times observe noncrystallographic translational symmetry in

such structures. The ratio of observed reflections to refined

parameters typically limits the crystallographic refinement for

these cases (Zwart et al., 2008; Vila-Sanjurjo et al., 2004).

1.2. Introduction to superspace

If the crystallographer chooses to retain the distinction

between main and satellite reflections, then superspace is used

to describe the modulated crystal and the problems associated

with average and superstructure approximations are alle-

viated. Superspace, although conceptually more difficult,

provides a much more accurate method for solving modulated

structures. The general concepts of superspace are introduced

here. However, several conventions first need to be explained.

Classical three-dimensional crystallography represents the

unit-cell vectors as a, b and c with their respective coordinates

x, y and z. These are now denoted a1, a2 and a3 with coordi-

nates x1, x2 and x3. This notation is used because it is easy to

extend it to any number of dimensions. For (3+1)D superspace

the axes are as1, as2, as3 and as4 and the dimensions are x1, x2, x3

and x4. The fourth dimension is defined to be perpendicular to

all three dimensions of physical space. It is convenient to draw

two-dimensional (or three-dimensional) sections in super-

space (for example as1 versus as4), as it is impossible to draw

all four perpendicular dimensions on paper or on a computer

system. Furthermore, it is convenient to define a space line, R,

which represents all of physical space.

Using these conventions, a (3+1)D modulated structure can

be diagrammed. In a periodic crystal the same atom occupies

the same location in every unit cell (Fig. 3a). An atom that has

a modulation of a displacement nature is shown over several

neighboring unit cells (black dots in Fig. 3b) relative to the

average position of the atom (circle). Here, the atomic posi-

tions are only shown along a single axis for simplicity. This

modulation is commensurately repeating every three unit

cells. Also, the displacements relative to the size of the unit

cell are exaggerated from what would be observed in order to

make the modulation easier to visualize. In each unit cell, the

position of the atom is different. A (3+1)D superspace

description of the system is shown in Fig. 3(c). The superspace

description provides a much more complete picture of the

displacements than the supercell description (Fig. 3b versus

Fig. 3c). The superspace approach is successful for both

commensurate and incommensurate modulations. For each

q vector, an extra dimension (as4 in Fig. 3c) is added to the

system that is orthogonal to physical space (R). Units along R
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Figure 3
Description of superspace. (a) A periodic crystal structure that is
composed of one atom (circle) in the asymmetric unit for seven unit cells.
(b) A modulated system with the actual atomic positions (black dots)
displaced from the average positions (circles). A commensurate
modulation repeating every three unit cells is drawn. (c) Superspace
description given as a (1+1)-dimensional drawing of the atomic positions
shown in (b). A section defined by the superspace vectors as1 and as4 is
shown, with as4 perpendicular to a1 (not shown) and the angle between a1

and as1 defined by the � component of q, where q = �a�1 + �a�2 + �a�3 (see
p. 253 and Figs. 7c and 8 of Wagner & Schönleber, 2009). The average
position (dashed vertical lines), actual atomic positions (black circles),
atomic modulation functions (gray wavy lines) and projections (gray
dashed lines) to t-sections are shown. R represents physical space and
contains all three directions; it is parallel to a1. The modulation is
commensurate with q = (1/3)a�1 + 0a�2 + 0a�3 . (d) Superspace diagram
showing a 2/7 commensurate modulation with the unit-cell reordering
that occurs in the t-plot highlighted in the enlarged area from t = 0 to t = 1.
The unit cells 1–7 are encountered in the order 1, 5, 2, 6, 3, 7, 4 as t goes
from 0 to 1.



are in terms of unit cells. In this example, a1 (not shown in

Fig. 3) is along R. Units (t) along as4 are in terms of the unit

waves of the modulation. The q vector determines the angle

that as1 makes with a1 [see p. 253 and Figs. 7(c) and 8 of

Wagner & Schönleber, 2009]. Fractional coordinates x4 along

as4 are measured in terms of unit waves and t is the phase of

the modulation wave and determines the displacements of

atoms along a1 for the respective unit cells. A periodic atomic

modulation function (AMF; gray lines in Fig. 3c) can now be

created in superspace that will correctly determine the posi-

tion of the atom in any unit cell in normal space relative to the

average position (black dashed lines). For atoms in superspace

that are not modulated the AMFs are straight lines.

In the example shown (Fig. 3c), the modulation waves

change through one phase cycle every three unit cells or a q

vector of (1/3)a�1 + 0a�2 + 0a�3 based on the direction and

spacing of the satellites from the mains (Fig. 1). The periodic

superspace structure is now defined by two basis vectors: as1

and as4. as1 makes an angle with a1, the tangent of which is

�/|a1|, where � is the q-vector component along a�1 ; in this case,

it would be arctangent[(1/3)/|a1|]. The modulation waves are

translated along as1 (i.e. are periodic in as1) and where they

intersect R the modulated atomic positions are found.

Equivalent superspace positions can be calculated along as4

for atoms in real space by projecting lines that are parallel to

as1 but pass through the atoms (gray dashed lines in Fig. 3c) to

the point where they intersect the modulation function closest

to the origin (gray circles). These positions can be further

compressed by translating them to their equivalent locations

in the modulation wave closest to the origin. Effectively, this

means that all atomic displacements for every possible unit

cell along the modulation direction can be visualized by

looking at one unit wave of the AMF (i.e. one t section).

One way to analyse data in superspace is with a t-plot. A

t-plot is constructed by looking at the atomic positions as a

function of t. A curious feature of superspace is that the order

in which states appear in a t-plot is not necessarily the order

that they will appear in the crystal. To illustrate this point,

Fig. 3(d) shows a diagram of a supercell that has two modu-

lation waves every seven unit cells [q = (2/7)a�1 + 0a�2 + 0a�3]. In

this case the unit cells are labeled 1–7. When their positions

are projected into superspace (gray dashed lines to gray

circles) they occupy two units in t. The positions in the range

t = 1 to t = 2 are translated to their

equivalent locations (dashed gray

circles) in the range t = 0 to t = 1. Here,

the unit cells are encountered as a

function of increasing t in the order 1, 5,

2, 6, 3, 7, 4 instead of 1, 2, 3, 4, 5, 6, 7 as

they would be ordered in the supercell.

This order is easier to see in the

enlarged t = 0 to t = 1 region shown in

Fig. 3(d).

For modulated systems, superspace

provides a more complete description

of the atomic displacements than the

supercell method. In superspace atoms

are described by continuous atomic modulation functions

describing a continuum of states instead of just a few discrete

points as in the supercell approach.

1.3. Superspace groups and superspace symmetry

Superspace has space groups and symmetry operators that

are functionally similar to the normal three-dimensional space

groups (van Smaalen, 2007; Dauter & Jaskolski, 2010). Table 1

shows a comparison of three-dimensional space group P212121

(No. 19) to a related (3+1)D superspace group P212121(00�)

(No. 19.1) as obtained from Table 9.8.3.5 of Janssen et al.

(1999). The extra information attached to the superspace

group describes the characteristics of the q vector. The (00�)

indicates that for this space group q vectors can only be along

one of the principal axes with a3 as the standard setting.

Additionally, the symmetry operators are listed for the

convention in which the modulation is along the a3 axis; if the

modulation is along one of the other axes then the sign would

need to be flipped to match that direction. The superspace

group P212121(0�0) is given as an example in Table 1 for a q

vector along the a2 axis. One interesting property of this

superspace group is the systematic absences. Main reflections

are systematically absent as in the three-dimensional space

group, but along the modulation direction if the main reflec-

tion is systematically absent then the associated satellites are

also systematically absent for this specific superspace group.

1.4. Superspace versus supercell

For commensurate modulations, both the superspace and

supercell approaches provide valid ways to describe how

atoms are positioned within the unit cell. Superspace will

describe a continuum of structural states along the modulation

function in each t section. The states found from the super-

space calculation should match the discrete states found using

a supercell approximation based on the same data. Thus,

unlike incommensurate modulations, a commensurate modu-

lation provides a unique situation in which a structure can be

solved using two independent approaches. The simulation

calculated here takes advantage of this situation.

For cases with a large supercell, the superspace approach

can provide better data-to-parameter ratios. For a case in

which the modulation can be described reasonably well using
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Table 1
A comparison between a three-dimensional space group P212121 with (3+1)D superspace groups
P212121(00�) and P212121(0�0).

Space group P212121 P212121(00�) P212121(0�0)

No. 19 19.1 19.1 reset
Unit-cell constraints � = � = � = 90� � = � = � = 90� � = � = � = 90�

q-vector constraints Not applicable Along x3 axis Along x2 axis
Symmetry operators x1, x2, x3 x1, x2, x3, x4 x1, x2, x3, x4

1
2 � x1, �x2, 1

2 + x3
1
2 � x1, �x2, 1

2 + x3, x4
1
2 � x1, �x2, 1

2 + x3, �x4

�x1, 1
2 + x2, 1

2 � x3 �x1, 1
2 + x2, 1

2 � x3, �x4 �x1, 1
2 + x2, 1

2 � x3, x4
1
2 + x1, 1

2 � x2, �x3
1
2 + x1, 1

2 � x2, �x3, �x4
1
2 + x1, 1

2 � x2, �x3, �x4

Special reflection
conditions

h00: h = 2n h000: h = 2n h000: h = 2n
0k0: k = 2n 0k00: k = 2n 0k0m: k = 2n
00l: l = 2n 00lm: l = 2n 00l0: l = 2n



second-order Fourier coefficients, each atom is described by

a minimum of 15 parameters in superspace independent of

how large the supercell might be. Here, each atom has three

coordinates to refine (x1, x2 and x3 for the average position)

and four parameters for the AMF for each coordinate (two

amplitudes and two phases). In the case of the supercell the

numbers of parameters grow as the supercell increases in size.

If the required supercell is five times the basic cell or larger,

then the superspace approach is better with respect to the

data-to-parameter ratio.

1.5. Modulated simulation for methods development

In order to develop methods to solve a modulated protein

(Lovelace et al., 2008) training data are needed to test them.

The training data can either be a solved structure with asso-

ciated experimental data or a simulated structure. Since at this

time there are no solved modulated protein structures, the

best option is a simulated training set. A simulated modulation

has previously been reported (Lovelace et al., 2010). This

simulation was successful at reproducing a diffraction pattern

that was modulated, as well as providing some interesting

information about the resolution, relative intensities and

diffraction order of satellite reflections versus the degree of

structural modulation. Unfortunately, it was not a good

candidate for use in methods development for several reasons.

First, it made use of a global modulation function that limited

the application to use in space group P1 only. Additionally, the

modulation ignored spatial and stereochemical restraints and

all of the atoms were converted to nitrogen, resulting in loss

of the amino-acid residue and chain information in the model.

In reality, a global modulation function will probably not be

sufficient to describe a modulated protein crystal structure.

It is likely that each atom (or rigid group of atoms) in the

crystallographic asymmetric unit will have unique displace-

ments and will require the refinement of its own modulation

function.

For methods development, the comprehensive training set

needs to consist of a protein model with realistic stereo-

chemical constraints and no steric conflicts. It also needs to

have individual atomic modulation functions that can be

expressed as Fourier series for the x1, x2 and x3 directions.

For the types of modulated protein crystals observed to date, it

will require structure factors (amplitude and phase) in (3+1)D

superspace. Finally, it is desirable for the simulation to be

calculated in a higher symmetry space (and superspace) group,

and the simulation will be most useful if the space group is one

that has already been observed in a real modulated protein

crystal (Porta et al., 2011).

2. Methods

The approach used to create the simulated data set is

diagrammed in Fig. 4. Firstly, a model system and a global

modulation function were selected. The global modulation

function is used to create a commensurate modulation of the

protein within a supercell. Structure factors are calculated

with the supercell modulated structure. Those structure

factors are reindexed in the (3+1)D superspace group and

both sets of indexing are saved. The global modulation is

converted into individual modulation functions for each atom

that is modulated. Through Fourier synthesis, the individual

modulation functions are converted to a second-order Fourier

series. Atomic positions are calculated for atoms occupying

the same volume as the supercell using the superspace

approach. To verify that the conversions are correct, the

atomic positions from superspace are compared with the

supercell positions. If all of the positions line up then the

superspace representation is consistent with the supercell

representation. Once both of the approaches agree, all of the

information is stored in appropriate files for use in methods

development.

2.1. Selection of a model system

Orthorhombic profilin–actin crystals can be induced to

become incommensurately modulated, with satellite reflec-

tions appearing near the periodic main reflections. The

modulation vector points in the x2

direction and the (3+1)D superspace

group is 19.1 with setting P212121(0�0).

The modulation is along the a�2 direction

and has an incommensurate q

vector of 0.2829 . . . (Porta et al., 2011).

The closest practical commensurate

approximation for this q vector is 2/7,

with about two modulation waves for

every seven unit cells. ToxD (PDB entry

1dtx; Skarzyński, 1992) was used

because it has the same P212121 space

group but contains fewer atoms than

profilin–actin (unit-cell parameters

a1 = 73.52, a2 = 39.06, a3 = 23.15 Å).

Another advantage is that it has large

solvent channels (Fig. 5b). To create the

modulated superstructure a polypeptide
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Figure 4
Data-processing flowchart.



fragment of the ToxD protein was clipped, trimmed and

translated to the solvent channel and was then modulated with

the global modulation function (Fig. 5). The modulated

polypeptide was placed in the solvent channel so that the

displacements would not create steric conflicts with any other

protein atoms. Several of the amino acids were also mutated to

alanine to free up even more space around the modulating

atoms.

2.2. Selection of a global modulation function

The next task was to pick a global modulation function. The

function took the form of a rotation about an axis. The axis

was defined by the C� atoms of the first and last amino acids in

the group of modulated atoms. The amount of rotation was

determined by the position of the center of mass (COM) of the

modulating atoms. The COM was used as it was an easy

property to calculate for the atoms independent of orienta-

tion. The COM along the x2 dimension was converted into x4

using (1). x4 is converted into an angular amount using (2).

�max was defined as 15� because at this amount of rotation

the relative intensities between main and satellite reflections

visually appeared similar to those observed for profilin–actin.

x4 ¼
COMx2

a2

q: ð1Þ

�ðx4Þ ¼ �max sinð2�x4Þ: ð2Þ

The simplified matrix form of the rotation about an axis

equation is fairly straightforward for this type of transforma-

tion (3). The rotation is accomplished by translating one of the

end points to the origin. The points are then rotated about x3

until the other end point is in the x1x3 plane. The points are

rotated about y until the other end point is along the x3 axis.

The points are rotated about x3 for the desired amount of

rotation. Finally, the inverse transforms are applied to return

the end points back to their original position. This transform is

widely used in three-dimensional graphics. The individual sub-

transformations can be pre-multiplied, resulting in a simplified

matrix form that is shown in (4).

An ¼

Trans�1 � Rot�1
x3
� Rot�1

x2
� Rot½�ðx4Þ� � Rotx2

� Rotx3
� Trans �Ai:

ð3Þ

A1nx1
� � � Ainx1

A1nx2
� � � Ainx2

A1nx3
� � � Ainx3

1 � � � 1

0
BBB@

1
CCCA ¼

TM11 � � � � � � TM14

..

. . .
. ..

.

..

. . .
. ..

.

TM41 � � � � � � TM44

0
BBBBB@

1
CCCCCA

A1x1
� � � Aix1

A1x2
� � � Aix2

A1x3
� � � Aix3

1 � � � 1

0
BBB@

1
CCCA: ð4Þ

Here, the rotation is represented as a (4 � 4) transformation

matrix (TM). The dimension of the transform is one dimen-

sion higher than the space to account for translations. This is

a slightly different formulation than that used in crystallo-

graphy, in which the rotation and translation are stored in a

3 � 4 matrix. The advantage of the 4 � 4 matrix is that all

operations are performed using matrix multiplication and

reverse operations can be performed by simply inverting the

4 � 4 matrix. In the 3 � 4 matrix formulation translation

requires special handling by the program for the extra column

to be interpreted as a translation. [As a simple example, (3) is

not valid for 3 � 4 matrices.] The atomic coordinates (x1, x2,

x3) for each atom are housed columnwise in the A matrix,

where i is the total number of modulating atoms in the

structure. To calculate the new positions (n), the atom matrix

(A) is multiplied by the transformation matrix (TM) to

generate the new rotated atomic positions.

2.3. Structure factors and superspace indexing

From the global modulation function it is possible to

calculate a supercell that has two modulation waves every

seven unit cells. This modulation was selected as a reasonable

commensurate approximation to that observed in the profilin–

actin crystals. ToxD was extended by sevenfold in the a2

direction to form a supercell and, using the global modulation

function, the displacements were applied to the modulated

atoms. SFALL was used with the supercell to calculate

structure factors (Winn et al., 2011). A comparison between

the modulated and periodic ToxD structure factors is shown

in Fig. 6. First-order satellites are visible in the modulated

data for most of the mains. At higher resolutions second-order
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Figure 5
The approach used to create an independent region that can be
modulated. (a) A schematic diagram showing how a region was selected
and displaced out into the solvent area. The boundaries were cleaned up
by mutating some of the residues to alanine. (b) The initial atomic
positions. (c) The position after the process is completed.



satellites are also visible (not shown). The structure factors are

converted to (3+1)D indexing, including mains and all first-

order and second-order satellites (Fig. 7). In this procedure,

the h and l indices are easily converted since they are the same

in both representations. The k index is more complicated. All

of the ks are integers divided by 7, keeping both the integral

part of the division and the remainder. The integral part is the

value of k in (3+1)D space. Remainders are used to determine

the m values, with a value of 0 for the main reflections (m = 0).

Remainders of 3 and 5 have m values of �1 and �2, respec-

tively, and the k value is the integral value incremented by 1.

Remainders of 2 and 4 have m values of 1 and 2, respectively,

and the k value is the integral value. Remainders of 1 and 6 are

discarded because the third-order satellites in this data set

are extremely weak, with I/� very close to 1. Following this

procedure, the three-dimensional structure factors from the

modulated supercell can be converted to (3+1)D with the

basic unit-cell dimensions. Note that in the three-dimensional

indexing (Fig. 7, left) a sevenfold unit cell was used, but in

superspace indexing (Fig. 7, right) a q vector of (2/7)a�2 was

used. The m indexing of the satellites is sequential with respect

to their associated main reflection. Thus, in this case the

satellites of the neighboring main reflections interweave

between one another (Fig. 7).

2.4. Individual atomic modulation functions

The standard way to describe the modulation for an atom

is to break the modulation into three orthogonal Fourier

expansions. There is one atomic modulation function (u) for

each primary axis (ux1, ux2 and ux3 corresponding to x1, x2 and

x3, respectively) that describes the deviation from the average

position as a function of x4. The global modulation function

can be converted to individual modulation functions by

rewriting the transformation matrix in (4) as shown in (5). An

extra translation is added to make the displacements relative

to the average position by translating the atom (Ai) to the

origin. This translation individualizes the atomic modulation

function for each atom since before this final translation all

displacements are still relative to the COM.

ux1

ux2

ux3

1

0
BB@

1
CCA ¼ Transð�AiÞ � PostTM � Rot½�ðx4Þ� � PreTM

Aix1

Aix2

Aix3

1

0
BB@

1
CCA:

ð5Þ

In (5), the PostTM matrix is created by multiplying the

Trans�1, Rotx3

�1 and Rotx2

�1 matrices because the values in these

matrices are dependent only on the location of the rotation

axis and therefore are effectively constant for all of the atoms.

For the same reason the PreTM matrix is created

by multiplying the Rotx2
, Rotx3

and Trans matrices. The Rot

matrix cannot be calculated ahead of time because it is a

function of �, which is a function of x4. Solving (5) for ux1
, ux2

and ux3
yields

ux1

ux2

ux3

0
@

1
A ¼

Aþ B sin½sinðDx4 þ EÞ� þ C cos½sinðDx4 þ EÞ�

F þG sin½sinðDx4 þ EÞ� þH cos½sinðDx4 þ EÞ�

I þ J sin½sinðDx4 þ EÞ� þ K cos½sinðDx4 þ EÞ�

8<
:

9=
;:

ð6Þ

For each dimension (x1, x2, x3) five parameters need to be

calculated to convert the rotational global modulation func-

tion into three orthogonal individual atomic modulation

functions for each modulating atom.

2.5. Fourier synthesis of the AMFs

Jana2006 uses atomic modulation functions expressed as

Fourier series (here denoted by F ). Using the known integrals

(Gradshteyn & Ryzhik, 2007),

1

�

R�
0

cosð2n�Þ cosðz sin �Þ d� ¼ J2nðzÞ; ð7Þ

1

�

R�
0

sin½ð2nþ 1Þn�� sinðz sin �Þ d� ¼ J2nþ1ðzÞ; ð8Þ

research papers

1068 Lovelace et al. � Simulation of modulated protein crystal structure Acta Cryst. (2013). D69, 1062–1072

Figure 7
Diagram demonstrating how the reflections from superspace are
reindexed into (3+1)D space.

Figure 6
Calculated structure factors in the training set: (a) periodic and (b)
modulated with a q vector of (2/7)a�2 .



it can be shown that the family of functions in (6) can be

converted to Fourier series as follows.

ux1
¼ f1ðx4Þ þ f2ðx4Þ þ f3ðx4Þ; ð9Þ

Fðux1
Þ ¼ F½f 1ðx4Þ� þ F½f 2ðx4Þ� þ F½f 3ðx4Þ�; ð10Þ

F ½f 1ðx4Þ� ¼ FðAÞ ¼ A; ð11Þ

F ½f 2ðx4Þ� ¼ FfB sin½sinðDx4 þ EÞ�g

¼ 2B
P1
n¼1

J2n�1ð1Þfsin½ð2n� 1ÞE� cos½ð2n� 1ÞDx4�

þ cos½ð2n� 1ÞE� sin½ð2n� 1ÞDx4�g; ð12Þ

F ½f 3ðx4Þ� ¼ FfðC cos½sinðDx4 þ EÞ�g

¼ CJ0ð1Þ þ 2C
P1
n¼1

J2nð1Þ½cosð2nEÞ cosð2nDx4Þ

þ sinð2nEÞ sinð2nDx4Þ�: ð13Þ

Here, Jn(x) are Bessel functions of the first kind. J is the letter

used to denote a Bessel function of the first kind, n is the index

and x is the argument, which in this case is 1. In a more

generalized case, where the function is not necessarily known,

a more straightforward approach is to first fit a curve through

the data. The next step is to oversample points on the curve.

The last step is to approximate the Fourier coefficients by

taking the fast Fourier transform (FFT) of the discrete data

and using these terms to approximate the Fourier series. The

approximate fits for one of the modulated atoms (Fig. 8) shows

the quality of the fit for the first-order (dotted line) Fourier

coefficients and the first-order and second-order coefficients

(solid line). Here, a coarse subsampling of the real functions is

shown as solid circles. Fourier coefficients were calculated by

sampling 4096 equally spaced points over a single unit wave of

the modulation function. This rate was expected to be many

times higher than the Nyquist–Shannon sampling rate

(Shannon, 1949) for this modulation. The colors identify the

different modulation functions along each dimension, where

x1, x2 and x3 are plotted as a function of x4. The second-order

coefficients seem to be a reasonable fit to the data (Fig. 8).

Data files for the (3+1)D superspace representation are

currently stored as comma-separated values in three different

files (reflections, atoms and superspace group/unit-cell infor-

mation) because there is currently no accepted format for a

modulated protein data set. The AMFs in Jana2006 do not

contain the constant term. This is because the atoms are

supposed to be at their average position and would have a

constant term of zero. The constant term from the Fourier

series was an indication that the initial atomic position was not

quite at the average position. The constant terms were added

to the atomic positions to move the atoms to the correct

average positions. These small shifts in the average structure

resulted in small correction to the Fourier phase coefficients,

as shown in Fig. 9.

3. Results and discussion

In order to verify that the two different representations

(superspace and supercell) were correct, atomic positions

were calculated for all of the atomic locations inside the

supercell including symmetry-related positions. These posi-

tions were compared with those calculated using the super-

space representation which would fill the same volume. The

superspace representation consisted of the average positions

of the atoms, their modulation functions and the superspace

symmetry operators. If everything has been converted

correctly then both representations should predict the same

atomic positions.

3.1. Supercell approach

The supercell approach was fairly straightforward. The

modified ToxD coordinate file was expanded along the a2

direction by sevenfold using PDBSET. The global modulation

function was used to modulate the atoms. The symmetry-

related positions were calculated with PDBSET and the atoms

were translated so that they occupied the sevenfold supercell.

Table 2 summarizes a comparison of the structure factors by
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Figure 9
Application and storage of the Fourier coefficients. The constant term is
added to the average structure, resulting in a slight adjustment to the
Fourier phase coefficients.

Figure 8
Example Fourier series fit of the three atomic modulation functions with
one for each axis (x1, x2 and x3). The actual position is shown subsampled
as solid circles. The first-order fit is shown as a dotted line. The second-
order fit is shown as a solid line.



comparing the average factors with the mains and the first-

order and second-order satellites of the modulated structure.

A similar analysis was performed on modulated profilin–actin

crystals (see Table 2 of Porta et al., 2011). SFTOOLS from the

CCP4 software suite was used to calculate an Rmerge of 13.5%

between Favg and Fmod(mains), which was overall better than

that observed for profilin–actin crystals (	30%). The merging

R value between Favg and Fmod(mains) increases with resolu-

tion as expected. This is because modulations affect the high-

resolution data more than the low-resolution data (Lovelace

et al., 2010). The Favg are more intense than Fmod(mains) at all

resolution levels. The ratio of first-order satellites over mains

has an average ratio of 0.12, which is lower but comparable to

the ratio observed for the profilin–actin system (0.20). Overall,

the simulated diffraction data recapitulate what was observed

with real modulated protein diffraction data.

3.2. Superspace approach

The superspace approach started with the modified ToxD

coordinates. The ToxD coordinates were converted to the

average structure by adding the constant portion of the FFT-

derived Fourier fits to the atoms. Symmetry-related positions

were determined by the superspace symmetry-related opera-

tors. The average structure was translated to the next unit-cell

position along b and the symmetry-related position procedure

was repeated. After six translations the resulting atomic

positions should be equivalent to those from the supercell

approach. Fig. 10 shows the results using these two

approaches. In this case the supercell positions are shown as

blue circles and the superspace positions are shown as red

dots. The top view is looking down the modulation axis and

the bottom view is looking along the modulation axis. Fig. 10

only shows the atoms that are modulating in the structure.

Both approaches predict the same locations. This indicates

that the global modulation function has been correctly

converted into individual atomic modulation functions and

that the superspace symmetry operators

have been applied correctly.

3.3. Superspace symmetry operators

Table 1 shows a comparison of the

superspace (3+1)D symmetry operators

with the standard symmetry operators.

From the table it may not be clear

how to use the superspace symmetry

operator with the modulation function.

In order to demonstrate how to apply

the superspace symmetry operators, an

operator from Table 1 will be described.

Firstly, an atom Ri from the atoms in the

average structure Ravg is selected. The

notation Ri(xn) is used to denote the xn

coordinate of atom i. We selected the

second symmetry operator (1/2 � x1,

�x2, 1/2 + x3, x4). This operator needs to

be corrected for the direction of the q vector. In International

Tables for Crystallography this superspace group is written for

the case in which the q vector is along c (x3). In this case the

modulation is along b (x2), resulting in the symmetry operator

becoming 1/2 � x1, �x2, 1/2 + x3, �x4 (De Wolff et al., 1981).

The sign of x4 needs to match the sign along the direction of

the q vector (x2). A new position for the atom (Rn) is calcu-

lated from the symmetry operator, where Rn = 1/2 � Ri(x1
),

�Ri(x2
), 1/2 + Ri(x3

). x4 is calculated by taking the dot product

of q and Rn. In the example, the value of x4 is (2/7)�Rn(x2
). The

final position (Rf) is determined by adding the atomic modu-

lations as determined by the atomic modulation functions. The

sign of the modulation function (u) is equal to the sign of the

operator along the dimension, resulting in a final position

Rf = Rn(x1
) � ux1

(�x4), Rn(x2
) � ux2

(�x4), Rn(x3
) + ux3

(�x4).

3.4. Representation of the modulation

Superspace data are often represented as a t-plot movie.

Two t-plot movies (provided as Supplementary Material1)

show the atomic positions for different t-sections from zero to

one. One t-plot shows the AMFs using only first-order FFT

coefficients and the second shows AMFs using first-order and

second-order FFT coefficients. Effectively, the t-plot shows

one period of the modulation function and therefore all

possible atomic positions. It is important to note that although

the t-plot is representative of all possible positions, consecu-

tive unit cells along the modulation will have a different

displacements than those shown in the t-plot. The reason for

this reordering was discussed in x1.2.

3.5. Import into Jana2006

To refine and solve a modulated protein structure will

require adding capabilities to an existing package. There are

two possibilities. The first is to modify a protein package to
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Table 2
Reflection statistics.

Structure factors from the average structure (Favg) and from the modulated structure (Fmod). The
modulated data were divided into mains, first-order satellites and second-order satellites. The number of
reflections for the first and second order is two times larger because there are two of these reflections for
each main reflection.

Fmod†

Resolution (Å) nref Rmerge† (%) Favg‡ Mains First order Second order

36.7–2.20 3695 8.69 123.12 (120.94) 120.77 (119.78) 15.01 (10.94) 6.50 (3.96)
2.20–1.73 3694 16.94 46.83 (27.92) 45.20 (27.08) 6.63 (3.97) 4.40 (2.49)
1.73–1.51 3695 19.14 26.00 (15.18) 25.18 (14.69) 3.57 (2.03) 2.72 (1.50)
1.51–1.37 3694 20.68 17.25 (9.55) 16.43 (9.18) 2.42 (1.37) 1.89 (1.06)
1.37–1.27 3695 18.94 13.15 (7.28) 12.70 (6.99) 1.77 (0.97) 1.35 (0.75)
1.27–1.19 3695 19.61 10.11 (5.64) 9.74 (5.47) 1.33 (0.75) 1.03 (0.57)
1.19–1.13 3694 18.27 8.15 (4.45) 7.80 (4.33) 1.04 (0.57) 0.81 (0.44)
1.13–1.08 3695 18.17 6.46 (3.62) 6.26 (3.51) 0.80 (0.44) 0.64 (0.35)
1.08–1.04 3694 18.29 5.10 (2.74) 4.92 (2.66) 0.63 (0.35) 0.50 (0.27)
1.04–1.00 3695 18.42 4.01 (2.18) 3.88 (2.10) 0.49 (0.28) 0.40 (0.22)

† Rmerge calculated using SFTOOLS as 200 �
P
jFavg � FmodðmainsÞj=

P
Favg � FmodðmainsÞ. ‡ Average structure-

factor intensities for the resolution shell with standard deviations in parentheses.

1 Supplementary material has been deposited in the IUCr electronic archive
(Reference: RR5034). Services for accessing this material are described at the
back of the journal.



understand superspace groups. The

second is to modify a small-molecule

package that can process modulated

data. Jana2006 is the premier software

package for the refinement and solution

of modulated small-molecule structures.

As a first step toward this integration we

decided to see how difficult it would be

to have Jana2006 input and display the

modulated protein data.

Three files from the simulation were

provided to Jana2006. The first was a

text file containing the superspace

group parameters and unit cell. The

second contained atoms as comma-

separated values. The values included

atom type, x1avg, x2avg, x3avg, modulation

flag, first-order and second-order

Fourier coefficients and phases in x1, x2

and x3. The third file contained the 3+1

indexing, intensities and phases.

After some trial and error, the infor-

mation was successfully imported into

Jana2006. Fig. 11 shows a two-dimen-

sional slice of the four-dimensional

electron density from superspace. The

slice shows the atomic displacement

along x2 as a function of x4 modulation

(two modulation periods are displayed; x4 goes from 0 to 2).

The contours for density are from high (yellow) to low (blue).

The atom which is represented by a function in superspace is

shown as a red line.

In superspace functions are fitted to the density as opposed

to individual atoms. The function follows the peak of the

density. For proteins this change will most likely require some

rethinking as to how stereochemical constraints are imple-

mented.

4. Conclusions

A more robust simulated modulated protein data set has been

created beyond what has been performed previously. This data

set uses the same superspace group as the incommensurately

modulated profilin–actin crystals. The modulation was

performed in such a way as to preserve stereochemical

constraints. The data set consists of a true three-dimensional

modulation along one of the crystal axes. The modulation was

performed in a commensurate fashion so that it can be used

to evaluate the software modifications that will be required in

order to allow the refinement of modulated protein structures.

The data are available as a collection of text files that can be

imported into other processing packages. The simulation was

successfully imported into Jana2006, as shown by the inclusion

of the two-dimensional slice from the four-dimensional

superspace electron density (Fig. 11). We are now faced with

the challenge of modifying Jana2006 to refine a protein

structure using stereochemical restraints and the other algo-
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Figure 10
Comparison of atomic positions generated using the supercell approach (circles) and the superspace
approach (dots). The top view is looking down the modulation axis. The bottom view is looking
along the modulation axis. Only the modulating atoms are displayed.

Figure 11
A section of superspace electron density for the N atom of residue 31 in
chain A of ToxD, showing density along x2 as a function of the modulation
x4. The atomic modulation function representing the position of the atom
within the superspace density is shown by the red line.



rithms that protein crystallographers use to deal with the

relatively low-resolution diffraction data collected from

protein crystals (noncrystallographic symmetry restraints, use

of rigid groups etc.).

In the future, this data set could be used to work through

the problems that will be encountered in the development of

software to refine and solve modulated structures. With the

simulation correctly imported into Jana2006, it should also be

possible to simulate and study incommensurate modulations.

Using incommensurately simulated data would allow us to

better understand how well a supercell approximation to an

incommensurately modulated data set will refine by varying

the modulation closer or further from the closest commen-

surate case.

As a final thought, at present there is no accepted format to

store modulated protein data. There are two options available.

The first would be to extend the PDB format (Bernstein et al.,

1977) to store the atoms, modulation functions, unit cell and

superspace group information. Proposing an extension to the

PDB format is nontrivial. Additionally, this approach would

still require a separate file to store the structure factors. The

second approach would be to use CIF (Hall et al., 1991). CIF

has the advantage that in principle all of the information can

be stored in one file. In practice, the mmCIF and msCIF

dictionaries need to be blended into the same file or a version

of the msCIF needs to be adapted to DDL2 for proteins.

This work was funded by the National Science Foundation

(grant MCB-0718661), the Nebraska Research Initiative and

the Eppley Cancer Center (support grant P30CA036727). We

would like to personally thank Professor Sander van Smaalen

(Bayreuth University) and to thank the aperiodic crystallo-

graphic community as a whole for useful discussions and

encouragement.

References

Bernstein, F. C., Koetzle, T. F., Williams, G. J., Meyer, E. F. Jr, Brice,
M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T. & Tasumi, M.
(1977). J. Mol. Biol. 112, 535–542.

Dauter, Z. & Jaskolski, M. (2010). J. Appl. Cryst. 43, 1150–1171.
Gradshteyn, I. S. & Ryzhik, I. M. (2007). Table of Integrals, Series,

and Products. New York: Academic Press.
Hall, S. R., Allen, F. H. & Brown, I. D. (1991). Acta Cryst. A47,

655–685.
Janssen, T., Janner, A., Looijenga-Vos, A. & Wolff, P. M. D. (1999).

International Tables for Crystallography, Vol. C, edited by A. J. C.
Wilson & E. Prince, pp. 899–947. Dordrecht: Kluwer Academic
Publishers.

Lovelace, J. J., Murphy, C. R., Daniels, L., Narayan, K., Schutt, C. E.,
Lindberg, U., Svensson, C. & Borgstahl, G. E. O. (2008). J. Appl.
Cryst. 41, 600–605.

Lovelace, J. J., Winn, M. D. & Borgstahl, G. E. O. (2010). J. Appl.
Cryst. 43, 285–292.

Porta, J., Lovelace, J. J., Schreurs, A. M. M., Kroon-Batenburg,
L. M. J. & Borgstahl, G. E. O. (2011). Acta Cryst. D67, 628–638.

Schreurs, A. M. M., Xian, X. & Kroon-Batenburg, L. M. J. (2010). J.
Appl. Cryst. 43, 70–82.

Shannon, C. E. (1949). Proc. Inst. Radio Eng. 37, 10–21.
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